## **INDEX**

| SR.NO. | NAME                                   | MODEL NO.    | PAGE NO. |
|--------|----------------------------------------|--------------|----------|
| 1      | CLAIFORNIA BEARING RATIO               | <b>BE 01</b> | 2-3      |
| 2      | RELATIVE DENSITY                       | BE 02        | 4-4      |
| 3      | SPEEDY MOISTURE METER                  | BE 03        | 4-4      |
| 4      | INFRARED MOISTURE METER                | BE 04        | 5-5      |
| 5      | LIQUID LIMIT                           | BE 05        | 5-5      |
| 6      | PLASTIC LIMIT                          | BE 06        | 6-6      |
| 7      | SRINKAGE LIMIT                         | BE 07        | 6-6      |
| 8      | CONE PENTROMETER                       | BE 08        | 7-7      |
| 9      | PYCNOMETER                             | BE 09        | 7-7      |
| 10     | UNCONFINED COMPRESSION                 | <b>BE 10</b> | 8-8      |
| 11     | TRIAXIAL MACHINE                       | <b>BE 11</b> | 8-9      |
| 12     | DIRECT SHEAR                           | <b>BE 12</b> | 10-10    |
| 13     | CONSOLIDATION                          | <b>BE 13</b> | 10-11    |
| 14     | SOIL PERMEABILITY                      | <b>BE</b> 14 | 12-12    |
| 15     | SWELL PRESSURE                         | BE 15        | 13-13    |
| 16     | SAND REPLACEMENT                       | <b>BE 16</b> | 13-13    |
| 17     | CORE CUTTER                            | <b>BE 17</b> | 14-14    |
| 18     | PROCTOR PENETROMETER                   | <b>BE 18</b> | 14-14    |
| 19     | PROCTOR COMPACTION                     | <b>BE 19</b> | 15-15    |
| 20     | UNIVERSAL AUTOMATIC COMPACTOR          | <b>BE 20</b> | 15-15    |
| 21     | MOTORISED VANE SHEAR                   | <b>BE 21</b> | 16-16    |
| 22     | SIEVE ANALYSIS & MOTRISED SIEVE SHAKER | BE 22        | 16-17    |
| 23     | HYDROMETER                             | BE 23        | 17-17    |
| 24     | PLATE LOAD TEST                        | BE 24        | 18-18    |
| 25     | DYNAMIC CONE PENTROMETER (DCP)         | BE 25        | 18-18    |
| 26     | STANDARD PENETRATION TEST (SPT)        | BE 26        | 19-19    |
| 27     | FIELD CALIFORNIA BEARING RATION        | BE 27        | 19-19    |
| 28     | POCKET PENETROMETER                    | BE 28        | 20-20    |
| 29     | RIFFLE SAMPLER DIVIDER                 | BE 29        | 20-20    |
| 30     | HIGH SPEEND STIRRER                    | <b>BE 30</b> | 20-20    |

## **CALIFORNIA BEARING RATIO**

#### **BE01**

This is a 50kN digital machine driven by a stepper motor, tailored for laboratory CBR (California Bearing Ratio) testing. Its microprocessor-based electronics ensure precise speed control and a user-friendly interface. It offers two fixed speeds: 1.2 mm/min for BS standards and 1.27 mm/min for ASTM standards, along with a fast platen adjustment speed of 50 mm/min.

In simpler terms, it's a specialized lab device for testing soil strength, using a motor to control movement accurately. The built-in computer chip makes it easy to operate and maintains consistent speeds for different testing standards, with a quick adjustment option for the testing platform.

#### **HILIGHT**

- 1) **Precise Speed Control**: Stepper motor ensures accurate speed regulation.
- 2) **Microprocessor-Driven**: Advanced microprocessor for reliable operation.
- 3) Large LED Display: 20mm LED for clear, easy-to-read output.
- 4) **Dual Speed CBR**: Supports BS and ASTM standards.
- 5) Fast Platen Adjustment: 50mm/min for quick setup.
- 6) **Optional Data Logger**: Automatic data collection available at additional cost.

#### STANDARD FOLLOWING

IS: 9669, IS: 2720 (Part 16), EN 13286-47, ASTM D1883, AASHTO T193, BS 1377:4, 1924:2

#### BE 01-01

## <u>CALIFORNIA BEARING RATIO TEST APPARATUS,</u> <u>MOTORIZED, SINGLE SPEED</u>

The equipment you're referring to has the same overall design and components as the BE 01-1 with the key difference being the material used for the mould assembly. Specifically, the mould, perforated base plate, and mould extension collar are made of Gun Metal instead of Mild Steel. The equipment operates at a one speed of 1.25 mm per minute.

#### **CBR MACHINE WITH ACCESSORIES**



#### **THE APPARATUS INDEX:-**

| BE 01-01 | Load Frame, 50 kN (5000kgf) Capacity, Single          |
|----------|-------------------------------------------------------|
|          | Speed 1.25 mm per minute.                             |
| BE 01-02 | Steel Mould-150 mm ID x 175 mm high                   |
| BE 01-03 | Steel Perforated Base Plate-for BE 12001              |
|          | Mould                                                 |
| BE 01-04 | <b>Steel Extension Collar-</b> 150 mm ID x 50 mm high |
| BE 01-05 | Penetration Piston, 50 mm face die                    |
| BE 01-06 | Adjustable Bracket, for Penetration Dial Gauge        |
| BE 01-07 | Circular Metal Spacer Disc, with detachable           |
|          | handle, 148 mm dia x 47.7 mm high                     |
| BE 01-08 | Annular Metal Weight, 2.5 kg, 147 mm die              |
|          | with 53 mm dia central hole                           |
| BE 01-09 | Slotted Metal Weight, 2.5 kg, 147 mm dia,             |
|          | with 53 mm dia slot                                   |
| BE 01-10 | <b>Perforated Plate,</b> 148 mm dia, with adjustable  |
|          | stem and lock nut                                     |
| BE 01-11 | Aluminum Tripod, for Dial Gauge                       |
| BE 01-12 | Cutting Collar                                        |
| BE 01-13 | Rammer, 2.6 kg, 310 mm controlled drop                |
| BE 01-14 | Rammer, 4.9 kg, 450 mm controlled drop                |
| BE 01-15 | Proving Ring, Capacity 50 kN                          |
| BE 01-16 | <b>Dial Gauge,</b> 25 mm travel, 0.01 mm least count  |

#### BE 01-02

# LABORATORY CALIFORNIA BEARING RATIO TEST APPARATUS, MOTORISED, 3 SPEED:-

The equipment you're referring to is almost identical to the BE 01-01 model in terms of its overall structure and components. However, there are a few key differences in the 3 Speed and as your order Manual type.



#### BE 01-03

# LABORATORY CALIFORNIA BEARING RATIO TEST APPARATUS, MOTORIZED, ELECTRONICS.

The equipment you're referring to is almost identical to the BE 01-01 model in terms of its overall structure and components. However, there are a few key differences in the Single Speed/3 Speed and include Load cell,LVDT,Digital Display.



#### **CBR Test Electronic outfit for consists of:**

#### BE 01-03-01

**Channel Digital Indicators** 1 No. Mode of Digital: The decimal

Display point is positioned by display the channel selector switch Power:

 $220V \pm 10\%$  mains, 50 Hz, Single Phase,

AC supply No. of channels: 2,

Parameter: By a selector switch display

## BE 01-03-02 LOAD CELL - 1 No.

Capacity: 50 kN (5000 kgf), Compression Type with 3m long cable

Maximum: 110% of the rated capacity Overload Sensing: Strain Gauges in full bridge configuration

#### BE 01-03-03 LVDT- 1 No.

With sufficient long cable 1 No.

Range: ±25 mm

Sensing element: LVDT

## BE 01-04

# LABORATORY CALIFORNIA BEARING RATIO TEST APPARATUS, MOTORIZED, ELECTRONICS WITH SOFTWARE

The equipment you're referring to is almost identical to the BE 01-03 model in terms of its overall structure and components. However, there are a few key differences in the Single Speed/3 Speed.

#### **IMPORTANT EXTRAS**

BE 01-04-20 Data Acquisition system

BE 01-04-21 Software



## LABORATORY CALIFORNIA BEARING RATIO TEST APPARATUS SERVO TYPE ELECTRONICS WITH SOFTWARE

The equipment you're referring to is almost identical to the BE 01-03 model in terms of its overall structure and components. However, there are a few key differences in the Single Speed/3 Speed and servo load type.



BALAJI ENTERPRISES

## **RELATIVE DENSITY APPARATUS**

#### BE 02

The apparatus measures the relative density of cohesion less, free-draining soils, suitable for soils with up to 12% particles passing a No. 200 (75 $\mu$ m) sieve, which don't respond well to standard compaction tests. It uses vibratory compaction for maximum density and pouring for minimum density. The set includes a vibrating table.

#### **STANDARD FOLLOWING**

ASTM D4253, D4254.

IS 2720 (Part 14)

## THE EQUIPMENT INCLUDES THE FOLLOWING PARTS

| BE 02-01 | VIBRATING TABLE                        | A steel table featuring a cushioned, vibrating steel platform, designed to operate at around 3,600 vibrations per minute when loaded with 115 kg. It is built to function on a 415 V, 50 Hz, three-phase AC power supply. |
|----------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BE 02-01 | Cylindrical Metal Unit<br>Weight Mould | Cylindrical Mould of 3000 cm3 capacity complete with guide sleeves and clamp, assembly surcharge weight with base plate and handle is equivalent to 140 gm/cm2.                                                           |
| BE 02-02 | Cylindrical Metal Unit<br>Weight Mould | Cylindrical Mould of 15000 cm3 capacity complete with guide sleeves and clamp, assembly surcharge weight with base plate and handle is equivalent to 140 gm/cm2.                                                          |
| Be 02-03 | Dial Gauge Holder                      | Dial Gauge holder                                                                                                                                                                                                         |
| BE 02-04 | Dial Gauge                             | Dial Gauge 0.01mm x 50mm with travel with extension piece                                                                                                                                                                 |
| BE 02-05 | Calibration bar                        | Calibration bar 75mm x 300mm x 3mm - 1 Set                                                                                                                                                                                |



## **SPEEDY MOISTURE METER**

#### BE 03

The Speedy Moisture Meter is a device used to quickly measure the moisture content in materials like soil, sand, and other fine-grained substances with good accuracy, following standards IS:2720 (Part 2) and IS:12175. It works by mixing the sample with calcium carbide, which reacts with the water in the sample to produce acetylene gas. The amount of gas generated is proportional to the moisture present in the sample. This gas builds up pressure inside the device, which is measured by a built-in gauge. The gauge shows the moisture content as a percentage of the sample's wet weight. You can then use a formula to convert this reading to the moisture content based on the sample's dry weight.

#### **STANDARD FOLLOWING**

IS 2729 (PART 2)

#### **ITS TWO TYPPE EQUIPMENT**

| BE 03 -01           |       |  |
|---------------------|-------|--|
| Range               | 0-25% |  |
| Gauge Division 0.5% |       |  |
| BE 03 -02           |       |  |
| Range 0-50%         |       |  |
| Gauge Division      | 1%    |  |



## **INFRA RED MOISTURE METER**

#### BE 04

This moisture meter is a portable device designed to quickly and accurately measure the moisture content in various materials. It uses a torsion wire mechanism where a calibrated drum applies torque to one end of the wire to counterbalance the weight loss as the sample dries under infrared radiation. This rapid drying process, taking about 30 minutes, combined with a frictionless balancing system, delivers results as precise as traditional oven drying methods. The simultaneous drying and weighing feature makes it ideal for materials that quickly reabsorb moisture after drying. A voltage regulator controls the infrared radiation for precise heat management, and an indicator lamp signals when the device is powered on.

The torsion balance includes a magnetic damper to minimize pan vibrations, enabling faster and more stable weighing. The balance scale (drum) displays moisture percentages on a wet weight basis, with graduations from 0 to 100% in 0.2% increments, and readings can be estimated to 0.1% accuracy. The unit comes equipped with an infrared lamp and an L-shaped thermometer and operates on a 220 V, 50 Hz, single-phase AC power supply.

#### STANDARD FOLLOWING

IS 2720 (PART 2)



#### DESCRIPTION

| Capacity         | 5g apporx.                                       |
|------------------|--------------------------------------------------|
| Sensitivity      | 10 mg apporx.                                    |
| Range            | 0 to 100% moisture content a wet weight basis    |
| Reading Accuracy | ± 0.20%                                          |
| Probable error   | $\pm$ 0.25% in the lower range up to compared to |
|                  | 25% and $\pm$ 1% for moisture contents.          |
| Oven Method      | Above 50 %                                       |

#### **EXTRA ACCESSORIES**

BE 04-01 - Infra Red Lamp

BE 04-02 - Thermometers (L-shaped)

BE 04-03 - Torsion Wire, pack of six

## **LIQUID LIMIT**

#### BE 05

The liquid limit, which marks the moisture content where soil transitions from a plastic to a liquid state, is crucial for assessing the potential characteristics of soil material. It indicates the soil's shear strength when combined with water. The liquid limit can be measured using either the Casagrande Method or the Cone Penetrometer Method.

#### **CASAGRANDA METHOD**

The Casagrande Method is a widely accepted, standardized test in soil mechanics used to determine the liquid limit of soil. It ensures reliable and consistent results through its high-quality design and compliance with international standards. A motorized version with an integrated blow counter is also available for enhanced precision.

The Liquid Limit Device features a hard rubber base supporting a sliding carriage with a hinged brass cup. The cup is lifted and dropped from a height of 1 cm onto the rubber base using a lead screw located at the back of the carriage. The device comes complete with a Casagrande grooving tool and a gauge block (Type A, as per IS: 9259).

#### STANDARDS FOLLOWING

IS 2720 (part 5), IS: 9259.BS:1377-2, ASTM D4318, **AASHTO T89** 

#### **DESCRIPTION**

| BE 05-01 | Liquid limit | Hand Operated                                                                     |
|----------|--------------|-----------------------------------------------------------------------------------|
| BE 05-02 | Grooving     | A grooving tool is provided to create a                                           |
|          | Tool         | standardized groove in the soil paste.<br>This groove serves as a reference point |
|          |              | to observe the soil's behavior as it transitions from plastic to liquid state.    |

#### **MOTORIZED LIQUID LIMIT DEVICES**

BE 05



#### HAND OPERATED LIQUID LIMIT DEVICES

BE 05-01

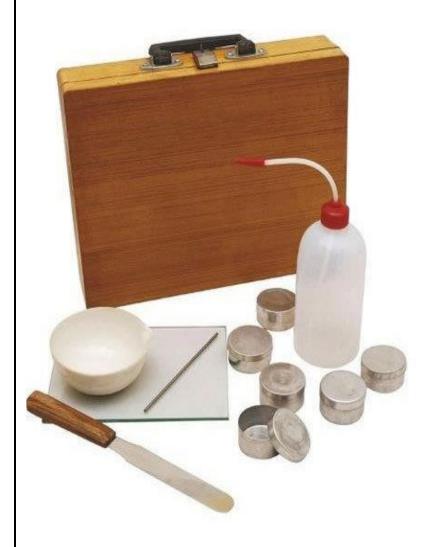


## **PLASTIC LIMIT**

#### BE 06

Plastic limit (PL) is the moisture content at which a fine-grained soil cannot be remolded without cracking. The plastic limit test requires repeated rolling of a soil sample into a thread until it reaches a point where it crumbles.

Plastic limit (PL) along with shrinkage limit (SL) and liquid limit (LL) comprise the Atterberg limits.


The PL is expressed as a percentage of the weight of the oven-dry soil, at the boundary of plastic and semi-solid consistency. It is the moisture content at which the rolled soil will begin to crumble when rolled into a thread  $3 \, \text{mm}$  or  $1/8^{\text{th}}$  inch in diameter.

#### **STANDARD FOLLOWING**

**2720** (Part 5)-1985

## **DESCRIPTION**

| BE 06-01 | Ground Glass      | The ground glass plate having |
|----------|-------------------|-------------------------------|
|          | Plate             | 30 cm (12 in.) sides and is   |
|          |                   | square in shape with a        |
|          |                   | thickness of 1 cm             |
| BE 06-02 | Spatula or a Pill | Consists of a blade of about  |
|          | knife             | 2cm width and 10 to 13 cm     |
|          |                   | long.                         |
| BE 06-03 | A metallic rod    | a diameter of 3.2mm and       |
|          |                   | 100mm long.                   |
| BE 06-04 | Containers        | Moisture Containers           |



## **SRINKAGE LIMIT**

#### BE 07

The **shrinkage limit test** is a method used to assess the behavior of cohesive soils as they lose moisture. The shrinkage limit is defined as the water content at which a reduction in moisture does not lead to a decrease in the volume of the soil mass. This property is crucial for understanding soil stability and behavior in various engineering applications.

#### **STANDARD FOLLOWING**

IS-2720 (PART-VII), EN ISO 17892 (PART 12), BS 1377 (P-2), ASTM D4318

| DE 05 01 |                       | 5 1:5:                           |
|----------|-----------------------|----------------------------------|
| BE 07-01 | Evaporating Disc      | Porcelain Disc                   |
| BE 07-02 | Prong Plate           | 75 mm x 75 mm, 3 mm thick        |
| BE 07-03 | Plain Plate           | 75 mm x 75 mm                    |
| BE 07-04 | Spatula               | Consists of a blade of about 2cm |
|          |                       | width and 10 to 13 cm long.      |
| BE 07-05 | Straight Edge         | 6 cm long                        |
| BE 07-06 | Measuring cylindrical | capacity of 25 ml                |
| BE 07-07 | Brass cup/Shrinkage   | 45 mm diameter and 15 mm in      |
|          | Disc                  | height                           |
| BE 07-08 | Glass cup             | 50 to 55 mm in diameter and 25   |
|          |                       | mm in height                     |
| BE 07-08 | Mercury               | Its extra charges(not include to |
|          |                       | Equipment) (750 gm)              |





## **CONE PENTROMETER**

#### BE 08

The liquid limit (LL) of soil is a key Atterberg limit that defines the moisture content at which soil transitions from a plastic to a liquid state. Two primary methods are used for its determination: the Casagrande method (percussion cup method) and the Cone Penetrometer method (also known as the Fall Cone test). In the Casagrande method, a soil pat in a cup is grooved, and the number of blows (typically 25) required for the groove to close over 12 mm is measured to plot against moisture content. In contrast, the Cone Penetrometer method involves dropping a standardized cone (e.g., 80 g mass, 30° angle) onto a soil sample for 5 seconds and measuring the penetration depth (typically 20 mm for LL).

Ease of Performance

Dependence on Apparatus and Operator

Applicability to Soil Types

Repeatability and Consistency

Time and Effort

Shear Strength Basis

#### STANDARD FOLLOWING

IS 2720 (Part 5) BS:1377

#### **DESCRIPTION**

| BE 08-01 | Universal Type   | Operated For Automatically    |
|----------|------------------|-------------------------------|
| BE 08-02 | Penetration Cone | cone has a tip angle of 60    |
|          |                  | degrees and a base area of 10 |
|          |                  | cm <sup>2</sup>               |
| BE 08-03 | Penetration Cup  | 55 mm dia x 40 mm deep        |





## **PYCNOMETER**

#### BE 09

The pycnometer method is a precise laboratory technique used to measure the specific gravity (also known as relative density) of solids, liquids, or powders. Specific gravity is defined as the ratio of the density of the substance to the density of water at a specified temperature (typically 4°C or room temperature, around 20–27°C). A pycnometer, also called a specific gravity bottle, is a flask with a ground-glass stopper that has a small capillary hole, allowing it to hold a known, precise volume of liquid or material. This method is widely used in fields like soil mechanics, chemical engineering, and materials.

### **STANDARD FOLLOWING**

IS 2386 (Part 3), ASTM D854, AASHTO T100,BS 137

| BE 09-01 | PYCNOMETER 250 ML  |
|----------|--------------------|
| BE 09-02 | PYCNOMETER 500 ML  |
| BE 09-03 | PYCNOMETER 1000 ML |



## UNCONFINED COMPRESSION

#### BE 10

Unconfined Compressive Strength (UCS) stands for the maximum axial compressive stress that a cohesive soil specimen can bear under zero confining stress. Unconfined compression test is one of the fastest and cheapest methods of measuring shear strength of clayey soil.

Unconfined Compressive Strength (UCS) is the load per unit area at which an unconfined cylindrical specimen of soil will fail in the axial compression test. If the axial compression force per unit area has not reached a maximum value even at 20 percent axial strain, the UCS shall be taken as the value obtained at 20 percent axial strain.

#### **STANDARD FOLLOWING**

IS 2720 (Part 10), AASHTO T208

#### **DESCRIPTION**

| BE 10-01 | MANUAL TYPE                |
|----------|----------------------------|
| BE 10-02 | DIGITAL TYPE WITH SOFTWARE |
| BE 10-03 | SPLIT MOULD                |
| BE 10-04 | UNCONFINED ATTACHMENT      |
| BE 10-05 | Different Size cutter      |
| BE 10-06 | PROVING RING 25 KN         |
| BE 10-07 | DIAL GAUGE 25 MM           |
| BE 10-08 | LOAD CELL 25 KN            |
| BE 10-09 | LVDT 25 MM                 |

The Instrument you're referring to has the same overall design and components as the BE 10-01 & BE 10-02 with the key difference being manual type include Proving Ring, Dial gauge and 2<sup>nd</sup> type Digital with software and used to load cell, LVDT. Also Available Single Speed and Three Speed.

#### BE 10-01



#### BE 10-02



## TRIAXIAL CELLS

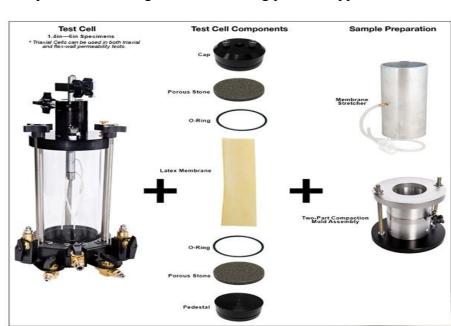
#### BE 11

The triaxial shear strength test is a widely used method to determine the mechanical properties of soil and rock samples. This test applies stress in different directions, allowing for the measurement of properties such as shear resistance, cohesion, and dilatancy stress. It involves subjecting a cylindrical core specimen to confining pressures on all sides to evaluate its shear strength.

#### **STANDARD FOLLOWING**

IS 2720 (Part 11) and (Part 12)

Triaxial Cell for Soil Testing (38mm and 50mm Diameter Specimens)


**Specimen Sizes**: Designed for cylindrical soil specimens of 38 mm diameter  $\times$  76 mm length (aspect ratio 1:2) and 50 mm diameter  $\times$  100 mm length (aspect ratio 1:2), compliant with standards like IS:2720 (Part XII).

**Chamber Construction**: Made from Perspex (acrylic plastic) for transparency, allowing visual observation during testing. Includes an anvil (base pedestal) and a loading plunger (top cap) for applying axial load

#### **Design Features:**

Easily disassembled by releasing four tie rods for quick specimen access.

Leak proof sealing up to 10 bar (approximately 10 kg/cm<sup>2</sup> or 145 psi) fluid pressure, ensuring reliable confining pressure application.



## **DESCRIPTION**

| BE 11-01 | Manual type Load frame                                                                           |
|----------|--------------------------------------------------------------------------------------------------|
| BE 11-02 | Digital type with Software                                                                       |
| BE 11-03 | Perspex loading pads (38 mm and 50 mm dia.)                                                      |
| BE 11-04 | Pair of plain Perspex discs (38 mm and 50 mm dia. × 6 mm thick)                                  |
| BE 11-05 | Porous stones (38 mm and 50 mm dia. × 6 mm thick) for drainage                                   |
| BE 11-06 | Split sand former and sheath stretcher for sample preparation (38 mm and 50 mm)                  |
| BE 11-07 | Pore Pressure Apparatus: Includes a null indicator, mercury manometer, and volume change burette |
| BE 11-08 | Proving Ring 50 kn                                                                               |
| BE 11-09 | Dial Gauge 25 mm                                                                                 |
| BE 11-10 | Load Cell 50 kn                                                                                  |
| BE 11-11 | LVDT 25 mm                                                                                       |
| BE 11-12 | Constant Pressure System: Air or oil-based for                                                   |
|          | maintaining confining pressure (up to 10 bar)                                                    |
| BE 11-13 | Foot Pump                                                                                        |
| BE 11-14 | Water Tank Assembly                                                                              |



## BE 11-01



## BE 11-02

This Equipment same as a BE 11-01 Only Change is Load Cell,LVDT and Digital Indicator.



## BE 11-12

Constant Pressure System: Air or oil-based for maintaining confining pressure (up to 10 bar)



## **DIRECT SHEAR**

#### BE 12

A direct shear test is a geotechnical laboratory procedure to measure the shear strength of soil by applying a normal load to a soil sample and then shearing it horizontally across a predetermined plane until failure. The test determines the soil's cohesion (C) and angle of internal friction  $(\emptyset)$ , which are critical parameters for designing structures like foundations and retaining walls. The soil sample is contained in a two-part shear box, and the upper half is moved horizontally relative to the fixed lower half, while the shear force and horizontal displacement are measured until the sample fails.

#### **STANDARD FOLLOWING**

Ref. Standards IS:11229, 2720 (Part 13)

#### **DESCRIPTION**

Type of Shear - Direct/Residual measurement

Operation - Motorized

Rates of Strain – A - 1.25, 0.625, 0.25, 0.125, 0.05, 0.025,

(mm/min) B - 0.01, 0.005, 0.002, 0.001, 0.0004, 0.0002

Specimen Size - 60 x 60 x 25mm

Power - 220 V, 50 Hz, Single Phase, AC supply

| BE 12- | Manual type Direct Shear                        |  |
|--------|-------------------------------------------------|--|
| 01     |                                                 |  |
| BE 12- | Digital with Software type Direct Shear         |  |
| 02     |                                                 |  |
| BE 12- | Shear Box Assembly                              |  |
| 03     |                                                 |  |
| BE 12- | Halves of the Shear Box                         |  |
| 04     |                                                 |  |
| BE 12- | Plane Gripper Plate                             |  |
| 05     |                                                 |  |
| BE 12- | Perforated Gripper Plate                        |  |
| 06     |                                                 |  |
| BE 12- | Porous Stone                                    |  |
| 07     |                                                 |  |
| BE 12- | Top Loading Pad                                 |  |
| 08     |                                                 |  |
| BE 12- | Base Plate                                      |  |
| 09     |                                                 |  |
| BE 12- | Shear Box Housing,                              |  |
| 10     | with two Ball Roller Strips                     |  |
| BE 12- | Specimen Cutter                                 |  |
| 11     | Specimen cunti                                  |  |
| BE 12- | Surcharge Weights                               |  |
| 12     | to attain Normal Stress of 3 kg/cm <sup>2</sup> |  |
|        | 0.05 kg/cm <sup>2</sup> 4 Nos.                  |  |
|        | $0.10 \text{ kg/cm}^2$ 1 No.                    |  |
|        | $0.20 \text{ kg/cm}^2$ 1 No.                    |  |
|        | 0.50 kg/cm <sup>2</sup> 3 Nos.                  |  |
|        | 1.00 kg/cm <sup>2</sup>                         |  |
| BE 12- | Tension- Compression Proving Ring,              |  |
| 13     | 25 kN (25000 kgf) capacity                      |  |
| BE 12- | Dial Gauge - 25 mm (2 Nos.)                     |  |
| 14     | (_ 1.00.)                                       |  |
| BE 12- | Load Cell 25 kn                                 |  |
| 15     |                                                 |  |
| BE 12- | LVDT – 25 mm (2 Nos)                            |  |
| 16     | , ,                                             |  |
| BE 12- | Digital Indicator                               |  |
| 17     |                                                 |  |
|        |                                                 |  |



## BE 12-01



## BE 12-02

It's Machine same as a BE 12-01 only some difference Digitalization with Software and include Load Cell, LVDT.



## **CONSOLIDATION**

BE 13

Clay soils, which are common in many regions, can pose significant challenges for construction due to a process called **consolidation**. This occurs when the soil's volume decreases over time as water is squeezed out of the tiny voids (pores) between soil particles under the weight of a structure, like a building or road. The process is gradual and time-dependent, often taking weeks, months, or even years to fully develop. If not accounted for in design, consolidation can lead to uneven settling of the ground, causing cracks in walls, floors, and foundations, or even structural failures. For example, buildings on thick clay layers may tilt or develop wide fissures if the soil compresses more on one side than the other.

Engineers use lab tests to predict and mitigate these issues. The key tool is the **one-dimensional consolidation test** (also known as the odometer test), performed on undisturbed soil samples from the site. This test simulates how the soil will behave under sustained loads, helping calculate expected settlement (how much the ground will sink) for safe foundation design. By understanding the soil's "history"—like whether it's been previously loaded by natural deposits—engineers can estimate both the total amount of settlement and how quickly it will happen.

The outfit is also available as Single gang, Three-gang or Six-gang in which three /

Six consolidometers are mounted on a single frame. The consolidation May be measured by the conventional dial gauges or using the LVDT to Digital Display.

#### STANDARD FOLLOWING

IS 2720 (Part 15), IS 12287, BS 1377, ASTM D2435

#### **DESCRIPTION**

| BE 13-01-A/B | Consolidation Cell Single gang                               |                                   |
|--------------|--------------------------------------------------------------|-----------------------------------|
|              | Assembly Manual/Digital                                      |                                   |
| BE 13-02-A/B | Consolidation Cell                                           | 3 gang Assembly                   |
|              | Assembly Manual/Digital                                      |                                   |
| BE 13-03-A/B | Consolidation Cell                                           | 6 gang Assembly                   |
|              | Assembly Manual/Digital                                      |                                   |
| BE 13-04     | Fixed ring with                                              | Single, Three and Six             |
|              | Guide ring                                                   | Assembly Set                      |
| BE 13-05     | Top Porous stone                                             | Single, Three and Six<br>Assembly |
| BE 13-06     | Bottom Porous stone                                          | Single, Three and Six<br>Assembly |
| BE 13-07     | Channeled base with                                          | Single, Three and Six             |
|              | water inlet                                                  | Assembly                          |
| BE 13-08     | Gasket                                                       | Single, Three and Six             |
|              |                                                              | Assembly                          |
| BE 13-09     | Water Jacket                                                 | Single, Three and Six<br>Assembly |
| BE 13-10     | Set of weights: 7 x 0.05                                     | Single, Three and six             |
|              | kg/cm <sup>2</sup>                                           | assembly                          |
|              | $5 \times 0.1 \text{ kg/cm}^2$ , $6 \times 0.2$              |                                   |
|              | kg/cm <sup>2</sup> ,<br>6 x 0.5 kg/cm <sup>2</sup> , 5 x 1.0 |                                   |
|              | kg/cm <sup>2</sup>                                           |                                   |
| BE 13-11     | Water Reservoir with                                         | Single, Three and Six             |
| DL 13-11     | plastic tube,                                                | Assembly                          |
|              | T - connection and a pinch                                   | rissemory                         |
|              | cock                                                         |                                   |
| BE 13-12     | Dial Gauge, 5 mm travel,                                     | Single, Three and Six             |
|              | 0.002 mm least count                                         | Assembly                          |
| BE 13-13     | Digital Display                                              | Single,Three,Six                  |
|              |                                                              | Channel                           |
| BE 13-14     | Displacement sensor, 0-10                                    | Single – 1 Nos                    |
|              | mm complete                                                  | Three – 3 Nos                     |
|              | with 3 m long cable (side                                    | Six – 6 Nos                       |
|              | entry)                                                       |                                   |
|              | mounting bracket                                             |                                   |
| BE 13-15     | Software                                                     | Single, Three or Six              |
|              |                                                              | Channel Need One                  |
|              |                                                              | Software all of us                |

NOTE:- A & B Means A Series Model no. like this Manual & B Series Model no. Digital. Single gang, Three gang and Six gang equipment manual or digital frame are same only minor differences like this Dial gauge,LVDT and Digital display with Software as per order.

#### **MOULD ASSEMBLAY**



BE 13-01-A & 13-02-A



BE 13-02-B



BE 13-01-A



| BE 14-08 | Drainage Cap      | with recess for a Porous       |
|----------|-------------------|--------------------------------|
|          |                   | Stone and fitted with Inlet    |
|          |                   | Valve and Air Release Valve    |
| BE 14-09 | Dummy Plate       | to serve as False Bottom       |
|          |                   | during compaction              |
| BE 14-10 | Porous Stone      | for Drainage Base Plate        |
| BE 14-11 | Porous Stone      | for Drainage Cap               |
| BE 14-12 | Rubber Connection | 3 m long,                      |
|          | Tube              | with Pinch Cock                |
| BE 14-13 | Overhead Tank     | made of steel, approx. 37.5    |
|          |                   | cm dia and 1 m high. It is     |
|          |                   | provided with an inlet port    |
|          |                   | at the top, six outlets at the |
|          |                   | bottom with cocks, air inlet   |
|          |                   | and water filling tube at the  |
|          |                   | top. An arrangement is         |
|          |                   | provided to indicate the       |
|          |                   | water level                    |
| BE 14-14 | Rammer            | 2.6 kg X 310 mm controlled     |
|          |                   | fall                           |
| BE 14-15 | Rammer            | 4.9 kg X 450 mm controlled     |
|          |                   | fall                           |
| BE 14-16 | Rubber Pipe       | For Connecting to Constant     |
|          |                   | or Falling head                |

## **SOIL PERMEABILITY**

## BE 14

Permeability refers to a soil's ability to allow water to flow through its interconnected voids. This property is critical in engineering because it influences how quickly saturated, compressible soil layers settle and how much water an aquifer can supply. Permeability is considered in various applications, such as pumping groundwater, spacing well points for dewatering excavation sites, designing reservoirs and dams, and selecting soils for different parts of embankments in dams and reservoirs.

The coefficient of permeability can be estimated using factors like the effective diameter of soil particles, porosity, specific surface area, or data from consolidation tests. However, since permeability depends on many variables, direct measurement in a laboratory using a device called a Permeameter is considered more reliable. Permeameters test small soil samples, require less time, and provide accurate results.

There are two main types of Permeameters: Constant Head Permeameters and Falling Head Permeameters. Constant Head Permeameters are used for coarse-grained, cohesion less soils, while Falling Head Permeameters are suitable for fine-grained soils (either remolded or undisturbed) with a coefficient of permeability less than  $10^{-2}$  cm/sec.

#### STANDARD FOLLOWING

IS 2720 (Part 17), IS 11209

#### **DESCRIPTION**

| · · · · · · · · · · · · · · · · · · · |                     |                             |
|---------------------------------------|---------------------|-----------------------------|
| BE 14-01                              | Constant Head       | used for coarse-grained,    |
|                                       |                     | cohesion less soils         |
| BE 14-02                              | Falling Head        | suitable for fine-grained   |
|                                       |                     | soils (either remolded or   |
|                                       |                     | undisturbed) with a         |
|                                       |                     | coefficient of permeability |
|                                       |                     | less than $10^{-2}$ cm/sec. |
| BE 14-03                              | Stand               | with three glass tubes of 6 |
|                                       |                     | mm, 10 mm and 20 mm dia     |
|                                       |                     | approx.                     |
| BE 14-04                              | Metallic Mould      | 100 mm dia x 127.3 mm       |
|                                       |                     | height, 1,000 ml volume     |
| BE 14-05                              | Extension Collar    | 100 mm dia x 60 mm height   |
| BE 14-06                              | Drainage Base Plate | with a recess for Porous    |
|                                       | -                   | Stone and an Outlet Valve   |
| BE 14-07                              | Metallic Clamping   | Used for Mould Fixed        |
|                                       | Ring                |                             |

#### **MOULD ASSEMBALY**



BE 14-01-02



| BE 15-08 | Load Transfer Bar |                          |
|----------|-------------------|--------------------------|
| BE 15-09 | Steel Ball        |                          |
| BE 15-10 | Soaking Tank      | 250 mm dia x 210 mm high |



## **SWELL PRESSURE**

#### **BE 15**

It sounds like you're describing a **swell pressure test apparatus** used in geotechnical engineering to measure the swelling pressure of expansive soils. This device determines the pressure exerted by a soil specimen when it swells upon water saturation, which is critical for designing foundations on expansive soils. Below is a concise explanation based on your description.

The apparatus is designed to measure the swelling pressure of soil specimens molded to a specific density and moisture content. When the specimen is soaked in water within a soaking tank, it tends to swell. The load required to restrain this swelling is transferred through a perforated swell plate and a load transfer bar to a proving ring, which measures the force. The proving ring is connected to a hand-operated load frame's lead screw, allowing precise application and measurement of the restraining load.

#### **STANDARD FOLLOWING**

IS 2720 (Part 41) 1977 and IS 11550 (1985)

#### **DESCRIPTION**

| BE 15-01 | Load Frame, Hand operated | Capacity 50 kN (5,000kgf)                                                          |
|----------|---------------------------|------------------------------------------------------------------------------------|
| BE 15-02 | Mould                     | 100 mm dia x 127.3<br>mm height (1,000 ml<br>volume) with base<br>plate and collar |
| BE 15-03 | Proving Ring              | with integral boss,<br>high sensitivity 2.5<br>kN (250 kgf) capacity               |
| BE 15-04 | Dial Gauge                | 25 mm travel, 0.01 mm least count                                                  |
| BE 15-05 | Perforated Swell<br>Plate | 100 mm dia x 16 mm thick                                                           |
| BE 15-06 | Spacer                    | 100 mm dia x 12.7 mm thick                                                         |
| BE 15-07 | Pair of Porous<br>Stones  | 100 mm dia x 12.7 mm thick                                                         |

# SAND REPLACEMENT METHOD SAND POURING CYLILENDER

#### **BE 16**

The apparatus described is used for the sand replacement method (also known as the sand cone test), a common field test to determine the insitu dry density of compact, fine, and medium-grained soils in layers up to 50 cm thick. Here's a concise explanation of the process and apparatus.

They are Two type Cylinder, Small Type and Large Type

#### **STANDARD FOLLOWING**

IS 2720 (Part 28), BS 1377-9

#### **DESCRIPTION**

| BE 16-01-A | Sand Pouring cylinder   | fitted with Conical Funnel    |
|------------|-------------------------|-------------------------------|
|            |                         | and Shutter, capacity 3 litre |
| BE 16-01-B | Cylindrical calibration | 100 mm ID x 150 mm height     |
|            | Container               | C                             |
| BE 16-01-C | Metal Tray              | size 30 x 30 x 4 cm, with 10  |
|            |                         | cm central hole               |
| BE 16-02-A | Large sand Pouring      | fitted with Conical Funnel    |
|            | Cylinder                | and Shutter, capacity 16.5    |
|            | •                       | litre                         |
| BE 16-02-B | Cylindrical Calibration | Internal diameter 200 mm      |
|            | Container               | and internal depth            |
| BE 16-02-C | Metal Tray              | 45 cm square and 5 cm deep    |
|            | •                       | with hole                     |

#### **BE 16-01-A (SMALL SAND POURING)**



#### **BE 16-02-A (LARGE SAND POURING)**





## **CORE CUTTER**

## **BE 17**

The core cutter method is a standard field test used to determine the insitu density and moisture content of soil, particularly cohesive soils like clay or silt. Here's a concise explanation of the process you described.

#### STANDARD FOLLOWING

IS 2720 (Part 29)

#### **DESCRIPTION**

| BE 17-01  | Cylindrical Core | made of steel,100       |
|-----------|------------------|-------------------------|
|           | Cutter           | mm dia x 130 mm         |
|           |                  | long                    |
| BE 17-02  | Steel Dolly      | 25 mm high and 100      |
|           |                  | mm dia, fitted with a   |
|           |                  | lip, to enable it to be |
|           |                  | located on top of the   |
|           |                  | Core-Cutter             |
| BE 17-03  | Rammer           | with Steel Rod          |
| 0         | RIES             |                         |
| BE 17 -04 | Cylindrical Core | 100 mm dia x 175        |
|           | Cutter           | mm long                 |
| BE 17 -05 | Cylindrical Core | 100 mm dia x 250        |
|           | Cutter           | mm long                 |
| BE 17 -06 | Cylindrical Core | 150 mm dia x 300        |
|           | Cutter           | mm long                 |

## **PROCTOR PENETROMETER**

## **BE 18**

You're describing a penetrometer, an instrument commonly used to measure the hardness or consistency of materials, such as soil, asphalt, or food products like fruits or cheese. The details you provided suggest a specific type of penetrometer, likely a cone penetrometer or needle penetrometer, used for determining the penetration resistance of a material. Here's a breakdown of the instrument based on your description

#### **STANDARD FOLLOWING**

ASTM D 1558

| BE 18-1 | Needle Point Set | comprising one each of 0.25, 0.5, 1, 1.5, 2, 3.5 cross sectional area and 6 cm <sup>2</sup> , and a Tommy Pin Complete as |
|---------|------------------|---------------------------------------------------------------------------------------------------------------------------|
|         |                  | above in a carrying case                                                                                                  |



#### **LIGHT COMPACTION BE 19-01-A**



#### **MODIFIED COMPACTION BE 19-02-B**



## PROCTOR COMPACTION

## **BE 19**

Soil compaction is critical for constructing stable earth structures like dams, reservoirs, canal embankments, highways, railways, and runways. The relationship between soil moisture content and compacted dry density is key for establishing construction specifications and ensuring quality control of earth fill. When designing earth or earth-retaining structures, soil strength and deformation behavior are assessed by testing specimens compacted to the target density expected in the field. Quality control during construction involves verifying that the compacted soil's density meets the required standards, ensuring adequate strength.

The Two type compaction set available for one type Standard compaction and second type Modified, both are same only difference to the size.

#### STANDARD FOLLOWING

IS 2720 (Part 7), IS 2720 (Part 8), IS 9198, ASTM D 698, D 1557

#### **DESCRIPTION**

| BE 19-01-A | Compaction Test Apparatus | 100 mm ID, 127.3 mm height |
|------------|---------------------------|----------------------------|
|            |                           | 1,000 ml volume            |
| BE 19-01-B | light compaction test     | 2.6 kg x 310 mm fall       |
| BE 19-01-C | heavy compaction test     | 4.9 kg x 450 mm fall       |
| BE 19-02-A | Compaction Test Apparatus | 150 mm ID, 127.3 mm height |
|            |                           | 2.250 ml volume            |

#### UNIVERSAL AUTOMATIC COMPACTOR

## **BE 20**

The described motor-driven mechanical compactor is a specialized piece of equipment designed for soil compaction testing in laboratories, offering significant improvements over manual methods. Used for compaction and penetration tests, including California Bearing Ratio (CBR) tests, in soil testing laboratories. Electrically operated, eliminating the labor-intensive hand compaction process, saving time. Motor-driven, with a rammer that travels across a 100 mm or 150 mm diameter mould. The mould rotates in equal steps on a stable base for uniform compaction. Circular-faced, 50 mm diameter. Adjustable weight: 2.6 kg or 4.9 kg.Adjustable to 310 mm or 450 mm.Number of blows per layer can be preset at the start of the test. Operates on 220V, 50 Hz, single-phase AC supply. This equipment enhances efficiency and consistency in soil compaction testing, making it suitable for standard laboratory procedures, including CBR tests. If you need further details.

#### **STANDARD FOLLOWING**

IS 2720 (Part 7 and 8), ASTM D558, D559, D560, D698, D1557; AASHTO T99, T134, T135, T136, T180



| BE 21-01 | Container        | For Sample                 |
|----------|------------------|----------------------------|
| BE 21-02 | Set of 4 Springs | each of capacity 2 kg-cm,4 |
|          |                  | kg-cm, 6 kg-cm and 8 kg-cm |



#### VANE SHEAR APPARATUS MOTORIZED

#### **BE 21**

A vane shears test apparatus, commonly used to measure the shear strength of soft, cohesive soils (like clays) in geotechnical engineering. Here's a concise breakdown of its components and operation. The main component that applies torque to the vane, adjustable in height. Allows precise height adjustment to lower the vane into the soil specimen. A cross-shaped blade inserted into the soil to measure shear resistance. Drives the rotation of the vane by turning a calibrated torsion spring. The spring connects to the vane shaft, and its deformation measures torque. The shaft links to a resettable pointer. The pointer moves on a dial graduated in degrees, showing the angle of torque. The torque is calculated by multiplying the dial reading by the spring factor (a constant specific to the spring). The vane is lowered into the soil, rotated by the motor, and the torque required to shear the soil is measured via the spring's deformation, indicated on the dial. The torque value (in units like Nm or kNm) is obtained by multiplying the dial reading (in degrees) by the spring factor. Rate of rotation: 1/60 rpm operates on 220, 50 Hz, Single Phase, AC supply. Supplied complete.

#### STANDARD FOLLOWING

IS 4434 (1978), IS 2720 (Part 30)

## **DESCRIPTION**

## SIEVE ANALYSIS & MOTORISED SIEVE SHAKER

## **BE 22**

The description outlines the importance of soil particle size analysis in engineering, aiding in applications like frost action assessment, filter design, grouting material selection, and concrete mix design. Coarse soils (gravel and sand) are analyzed using sieving, while finer soils require sedimentation procedures. For mixed soils, both methods are combined. BALAJI offers equipment for these analyses, though specific equipment details are not provided.

If you need information on BALAJI's equipment range, their suitability for specific tests, or further details on sieving/sedimentation procedures, please clarify or provide additional context. I can also search for real-time information on BALAJI's offerings if needed.

#### **STANDARD FOLLOWING**

IS 2720 (Part 4), ASTM D 422, AASHTO T 88, BS 1377

| BE 22-01   | Sieves,      | GI Frame of 450 mm diameter     |
|------------|--------------|---------------------------------|
| BE 22-02   | Sieves,      | GI Frame of 300 mm diameter     |
| BE 22-03   | Sieves,      | Brass Frame of 200 mm diameter  |
| BE 22-04   | Sieve Shaker | Single type                     |
| BE 22-04-1 | Sieve Shaker | Universal type (200,300,450 mm) |

#### GI SIEVE SIZE FOR 300 MM & 450 MM

| SIZE IN MM  | BE 22-01 (450 MM) | BE 22-02 (300 MM) |
|-------------|-------------------|-------------------|
| 125         | BE 22-01-A        | BE 22-02-A        |
| 106         | BE 22-01-B        | BE 22-02-B        |
| 90          | BE 22-01-C        | BE 22-02-C        |
| 75          | BE 22-01-D        | BE 22-02-D        |
| 63          | BE 22-01-E        | BE 22-02-E        |
| 53          | BE 22-01-F        | BE 22-02-F        |
| 45          | BE 22-01-G        | BE 22-02-G        |
| 37.5        | BE 22-01-H        | BE 22-02-H        |
| 31.5        | BE 22-01-I        | BE 22-02-I        |
| 26.5        | BE 22-01-J        | BE 22-02-J        |
| 22.4        | BE 22-01-K        | BE 22-02-K        |
| 19          | BE 22-01-L        | BE 22-02-L        |
| 16          | BE 22-01-M        | BE 22-02-M        |
| 13.2        | BE 22-01-N        | BE 22-02-N        |
| 11.2        | BE 22-01-O        | BE 22-02-O        |
| 9.5         | BE 22-01-P        | BE 22-02-P        |
| 8.0         | BE 22-01-Q        | BE 22-02-Q        |
| 6.3         | BE 22-01-R        | BE 22-02-R        |
| 5.0         | BE 22-01-S        | BE 22-02-S        |
| 4.75        | BE 22-01-T        | BE 22-02-T        |
| Pan & Cover | BE 22-01-U        | BE 22-02-U        |

| 90 micron   | BE 22-03-Y  |  |
|-------------|-------------|--|
| 75 micron   | BE 22-03-Z  |  |
| 63 micron   | BE 22-03-AA |  |
| 53 micron   | BE 22-03-AB |  |
| 45 micron   | BE 22-03-AC |  |
| 38 micron   | BE 22-03-AD |  |
| PAN & COVER | BE 22-03-AE |  |



#### **SIEVE SHAKER**

#### BE 22-04/22-04-1

Electrically operated mechanical Sieve Shakers streamline dry sieving, offering a standardized, efficient process that minimizes errors compared to manual sieving. With over 40 years of design improvements, these shakers are compact, lightweight, and benchmountable, eliminating the need for a concrete foundation. They feature reduced noise levels and a digital timer adjustable from 0-99 minutes. Widely used in industries like soil testing, ores, refractories, aggregates, pigments, coal, cement, roofing materials, plastics, and pharmaceuticals, they can handle up to 8 sieves. Powered by a ½ HP geared motor, the shaker combines gyratory and tapping motions, with the table inclined from the vertical axis and direction changing clockwise. They operate on 220 V, single-phase AC.

Its shaker's two types, one type is single size fixed sieve and second type universal type means 200,300,450 mm fixed sieve.

#### **BRASS SIEVE SIZE FOR 200 MM**

| DDACC CIEVE CIZE | DE 22 02 (200 MM) |
|------------------|-------------------|
| BRASS SIEVE SIZE | BE 22-03 (200 MM) |
| 5.60 MM          | BE 22-03-A        |
| 4.75 MM          | BE 22-03-B        |
| 4.0 MM           | BE 22-03-C        |
| 3.35 MM          | BE 22-03-D        |
| 2.80 MM          | BE 22-03-E        |
| 2.36 MM          | BE 22-03-F        |
| 2.0 MM           | BE 22-03-G        |
| 1.70 MM          | BE 22-03-H        |
| 1.40 MM          | BE 22-03-I        |
| 1.18 MM          | BE 22-03-J        |
| 1.0 MM           | BE 22-03-K        |
| 850 micron       | BE 22-03-L        |
| 710 micron       | BE 22-03-M        |
| 600 micron       | BE 22-03-N        |
| 500 micron       | BE 22-03-O        |
| 425 micron       | BE 22-03-P        |
| 355 micron       | BE 22-03-Q        |
| 300 micron       | BE 22-03-R        |
| 250 micron       | BE 22-03-S        |
| 212 micron       | BE 22-03-T        |
| 180 micron       | BE 22-03-U        |
| 150 micron       | BE 22-03-V        |
| 125 micron       | BE 22-03-W        |
| 106 micron       | BE 22-03-X        |





#### **BE 23**

A hydrometer is an instrument used to measure the density or specific gravity of liquids base on the principle of buoyancy. It typically consists of a sealed glass tube with a weighted bottom that floats in the liquid being measured. Hydrometers are commonly used in various applications, including brewing, winemaking, and measuring salinity in aquariums. to use a hydrometer, you simply place it in the liquid, and the level at which it floats indicated the specific gravity or density of the liquid.

#### **STANDARD FOLLOWING**

ASTM D422, AASHTO T88, IS 2720 (Part-IV)

#### **DESCRIPTION**

Range - 0.995 to 1.030 g/ml Division - 0.001 Shipping weight - 500 Grams



| r          |                    |                                       |  |
|------------|--------------------|---------------------------------------|--|
| BE 24-03   | High Pressure      | 5 m long                              |  |
|            | Flexible Metallic  |                                       |  |
|            | Hose               |                                       |  |
| BE 24-04   | Ball and Socket    | association of transport of selection |  |
| BE 24-04   |                    | consisting of two steel plates,       |  |
|            | Arrangement        | with one steel ball in-between the    |  |
|            |                    | plates                                |  |
| BE 24-05   | Extension Rod      | 12 mm dia x 25 cm long, for           |  |
|            |                    | taking Dial Gauge readings            |  |
| BE 24-06   | Magnetic base      | with female thread on top, for        |  |
| DE 24-00   | Wiagiictic basc    | ± ·                                   |  |
| DE 04.05   |                    | holding extension rod                 |  |
| BE 24-07   | Top End Plate      | 50 mm dia with male thread,           |  |
|            |                    | for fitting on to the Extension       |  |
|            |                    | Rods and positioning the Dial         |  |
|            |                    | Gauge Plunger                         |  |
| BE 24-08   | Column             | 15 cm dia x 25 cm long,               |  |
| DL 24-00   | Column             |                                       |  |
|            |                    | with flanges, complete with four      |  |
|            |                    | bolts and nuts                        |  |
| BE 24-09   | Column             | 15 cm dia x 50 cm long,               |  |
|            |                    | with flanges, complete with four      |  |
|            |                    | bolts and nuts                        |  |
| BE 24-10   | BE 15708 Datum     | light weight, portable, total span 5  |  |
| DE 24-10   |                    |                                       |  |
|            | Bar                | m,height approx. 30 cm, mounted       |  |
|            |                    | on two removable legs. (It is made    |  |
|            |                    | in two parts. Provision exists for    |  |
|            |                    | Datum Bar of 2.5 m span to be         |  |
|            |                    | used. A spare leg is provided for     |  |
|            |                    | the purpose. Complete with two        |  |
|            |                    |                                       |  |
|            |                    | quick release clamps for              |  |
|            |                    | Positioning and holding the dial      |  |
|            |                    | gauge brackets)                       |  |
| BE 24-11   | Dial Gauge         | 25 mm travel, 0.01 mm least count     |  |
|            |                    | Four                                  |  |
| BE 24-12   | Anchor Spike       | for plate bearing test apparatus      |  |
| BE 24-13   | Quick Release      | for positioning dial gauge bracket    |  |
|            | Clamp              | lor positioning dial gauge blacket    |  |
| DE 24-14   |                    | 20                                    |  |
| BE 24-14   | Grooved MS Plate   | 30 cm x 30 cm square x                |  |
|            |                    | 25 mm thick                           |  |
| BE 24-15   | Grooved MS Plate   | 45 cm x 45 cm square x                |  |
|            |                    | 25 mm thick                           |  |
| BE 24-16   | Grooved MS Plate   | 60 cm x 60 cm square x                |  |
|            |                    | 25 mm thick                           |  |
| BE 24-17   | Grooved MS Plate   |                                       |  |
| DE 24-1/   | Grooved IVIS Plate | 75 cm x 75 cm square x                |  |
|            |                    | 25 mm thick                           |  |
| BE 24-18   | Plain MS Plate     | 30 cm x 30 cm square x                |  |
|            |                    | 25 mm thick                           |  |
| BE 24-19   | Plain MS Plate     | 45 cm x 45 cm square x                |  |
|            |                    | 25 mm thick                           |  |
| BE 24-20   | Plain MS Plate     | 60 cm x 60 cm square x                |  |
| DE 24-20   | 1 Iam IVIS Flate   | <u> </u>                              |  |
| DE C : C : | D1 1 3 70 71       | 25 mm thick                           |  |
| BE 24-21   | Plain MS Plate,    | 75 cm x 75 cm square x                |  |
|            |                    | 25 mm thick                           |  |

### PLATE LOAD TEST

## **BE 24**

A Plate Load Test Apparatus this test is carried out to determine the bearing capacity of the ground on Road Structures, Road foundations, Road Infrastructures, Bridge, Airport and Highway Pavements. The plate bearing test is essentially a model test of foundations which projects the stress and strain characteristics for evaluating the ultimate bearing capacity of foundations. This technique is a standard one for estimating the bearing value of soil in-situ. The results of other methods are always compared with the values obtained by the plate load test. In this method, a steel plate of a certain dimension is subjected to gradually increasing loads and the corresponding settlement is noted. The ultimate bearing capacity is taken as the load at which the plate starts sinking continuously at a rapid rate.

#### STANDARD FOLLOWING

IS 1888-1982, ASTM D1194, ASTM D1195

#### **DESCRIPTION**

| BE 24-01 | Hand Operated  | Capacity 500 kN (50,000 kgf) |
|----------|----------------|------------------------------|
|          | Hydraulic Jack |                              |
| BE 24-02 | Hydraulic Hand | with 200 mm Dia Load Gauge   |
|          | Operated Pump  | capacity 500 kN (50,000 kgf) |



## **DYNAMIC CONE PENTROMETER**

**BE 25** 

The Dynamic Cone Penetrometer (DCP) is a portable tool for rapidly measuring the in-situ structural properties of unbound road pavement layers. It consists of an 8 kg weight dropping 575 mm onto a 20 mm diameter cone attached to a shaft, allowing penetration measurements up to approximately 850 mm deep. Readings are taken after a set number of blows, adjusted based on layer strength: 5–10 blows for strong granular bases, and 1–2 blows for weaker sub-base layers or sub grades. The test requires three operators—one to hold the device vertically, one to operate the hammer, and one to record results. It's quick, taking only a few minutes, and efficiently identifies layer boundaries and thicknesses without excavation.

#### **STANDARD FOLLOWING**

ASTM D6951, IRC SP 72

#### **DESCRIPTION**

| BE 25-01 | Cone                   | diameter: 20 mm ± 0.1             |  |  |
|----------|------------------------|-----------------------------------|--|--|
|          |                        | mm                                |  |  |
| BE 25-02 | Cone angle             | 60°                               |  |  |
| BE 25-03 | Hammer Weight          | $8 \text{ kg} \pm 0.1 \text{ kg}$ |  |  |
| BE 25-04 | Hammer freefall height | 575 mm ± 1 mm                     |  |  |
| BE 25-05 | Upper steel shaft      | 16 mm diameter                    |  |  |
| BE 25-06 | Lower steel shaft      | 16 mm Diameter                    |  |  |
| BE 25-07 | Graduation of lower    | Marked in 5 mm                    |  |  |
|          | shaft                  | increment                         |  |  |
| BE 25-08 | Length of lower shaft  | 900 - 1200 mm long                |  |  |
| BE 25-09 | Case size              | 1100 x 250 x 150mm                |  |  |
|          | approximately          |                                   |  |  |
| BE 25-10 | Weight                 | 29kg                              |  |  |
|          |                        |                                   |  |  |



#### STANDARD PENETRATION TEST

#### **BE 26**

The Standard Penetration Test (SPT) is a widely used in-situ test to evaluate soil properties. It measures penetration resistance by counting the number of blows (N-value) needed to drive a split spoon sampler 300 mm into the ground using a 65 kg hammer falling from 750 mm. The N-value indicates the degree of compactness for cohesionless soils (e.g., sand) and consistency for cohesive soils (e.g., clay), aiding in foundation design and assessing liquefaction potential under dynamic forces like earthquakes. Measures undisturbed soil strength and liquefaction resistance. A 65 kg weight drops 750 mm to drive a sampler 300 mm; blow count (N) is recorded. Foundation design, soil classification, and seismic risk assessment.

## STANDARD FOLLOWING

IS 2131, IS 9640, ASTM D-1586

#### **DESCRIPTION**

| BE 26-01 | Split Spoon Sampler | 50.8 mm Outer Dia and 38 mm<br>Inner Dia |
|----------|---------------------|------------------------------------------|
| BE 26-02 | Body                | split lengthwise                         |

| BE 26-03 | Shoe                | hardened with an inside cutting    |  |
|----------|---------------------|------------------------------------|--|
|          |                     | edge                               |  |
| BE 26-04 | Head                | fitted with a ball check valve and |  |
|          |                     | adapter to connect 'A' type drill  |  |
|          |                     | rod                                |  |
| BE 26-05 | Drive Weight        | Cast Iron, 63.5 kg, 78 mm bore     |  |
|          | _                   | ID approx.                         |  |
| BE 26-06 | Guide Pipe Assembly | Bore 73 mm OD approx.              |  |
| BE 26-07 | Tripod              | with Pulley and built-in Ladder    |  |
|          | _                   | & Rope                             |  |





## FIELD CALIFORNIA BEARING RATIO (FIELD CBR)

#### **BE 27**

The in-situ California Bearing Ratio (CBR) apparatus has become increasingly vital in large road construction projects due to its ability to efficiently assess the bearing capacity of soils. Mounted on a rolled steel joist cantilevered from a truck or attached to a mobile frame's underside, the apparatus enables rapid field testing through piston penetration. This method is particularly effective under specific conditions: when soil has a saturation degree of 80% or higher, when the material is coarsegrained and cohesionless (unaffected by water content changes), and when the material is already in place. These characteristics make the insitu CBR test a practical tool for determining load-carrying capacity directly in the field, ensuring reliable data for road design and construction.

#### **STANDARD FOLLOWING**

IS 2720 (PART-31), IS 12287

| BE 27-01 | Loading Jack            | with U-bracket, capacity 50 kN (5,000 kgf). This is specially designed for use with Field CBR test apparatus. It consists of a hand operated, two speed, screw jack fitted with a U-bracket. A hexagonal adapter is provided to fix a proving ring. A thrust bar, which passes through the U-bracket, is screwed on to a proving ring (supplied at extra cost) which protects the proving ring when the loading is eccentric. |
|----------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BE 27-02 | Proving Ring            | 50 kN (5,000kgf) capacity                                                                                                                                                                                                                                                                                                                                                                                                     |
| BE 27-03 | Dial Gauge              | 25 x 0.01 mm                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BE 27-04 | Slotted Metal<br>Weight | 10 kg, 215 mm to 250 mm dia with 53 mm dia slot 2 Nos.                                                                                                                                                                                                                                                                                                                                                                        |
| BE 27-05 | Slotted Metal<br>Weight | 5 kg, 215 mm to 250 mm dia with 53 mm dia slot - 2 Nos.                                                                                                                                                                                                                                                                                                                                                                       |
| BE 27-06 | Annular<br>Metal Weight | 5 kg, 250 mm dia with 53 mm dia central hole                                                                                                                                                                                                                                                                                                                                                                                  |
| BE 27-07 | Adjustable<br>Bracket   | for mounting the Dial Gauge                                                                                                                                                                                                                                                                                                                                                                                                   |
| BE 27-08 | Datum Bar<br>Assembly   | consisting of two stands and 1 m long Bar                                                                                                                                                                                                                                                                                                                                                                                     |
| BE 27-09 | Connector Set           | consists of eight connectors for coupling<br>the penetration piston and proving ring<br>assembly, either directly or through<br>extension pieces                                                                                                                                                                                                                                                                              |
| BE 27-10 | Extension Set           | consisting of 1 length of 5 cm, 2 lengths of 10 cm, 1 length of 30 cm, 1 length of 50 cm and a length of 100 cm used as spacers between the proving ring and penetration piston. The lengths are machined from steel tubing                                                                                                                                                                                                   |
| BE 27-11 | Penetration<br>Piston   | 50 mm dia threaded at the upper end, to connect to the various lengths of extension sleeves, through a connector                                                                                                                                                                                                                                                                                                              |
| BE 27-12 | Swivel Head             | for the Loading Jack                                                                                                                                                                                                                                                                                                                                                                                                          |



## POCKET PENETROMETER

#### **BE 28**

A pocket penetrometer is a handheld measuring tool that evaluates the penetration resistance and compression strength of soils. It is portable and compact, allowing for a quick soil analysis to determine soil consistency, moisture content, and approximate unconfined shear strength.

Pocket penetrometers provide rapid estimates of unconfined compressive strength, which is crucial for determining soil stability and safety during trench excavations.

This tool comprises a measuring rod with a graduated scale. The sharp tip penetrates the soil to evaluate factors such as load-bearing capacity, compaction level, and overall stability for building foundations. Because of the simple function, many people employ pocket penetrometers for rapid soil assessments.

## STANDARD FOLLOWING

ASTM D 1558 D 2573



## RIFFLE SAMPLER DIVIDER

#### **BE 29**

A Riffle Sample Divider is a device used for the rapid and representative sampling of aggregates, sand, and fillers. It consists of a metal box equipped with a series of equally wide chutes that alternately discharge material in opposite directions into separate pans. The chutes are designed with a steep incline to ensure a swift and smooth flow of material, facilitating accurate division of the sample into smaller, representative portions.

#### **STANDARD FOLLOWING**

IS 1607-1977, 2720, ASTM C 136, 0421, D422, D427, D4517, 0452, 0457, D806, D4318, BS: 812 (Part 103), 1377, AASHTO T27, T87

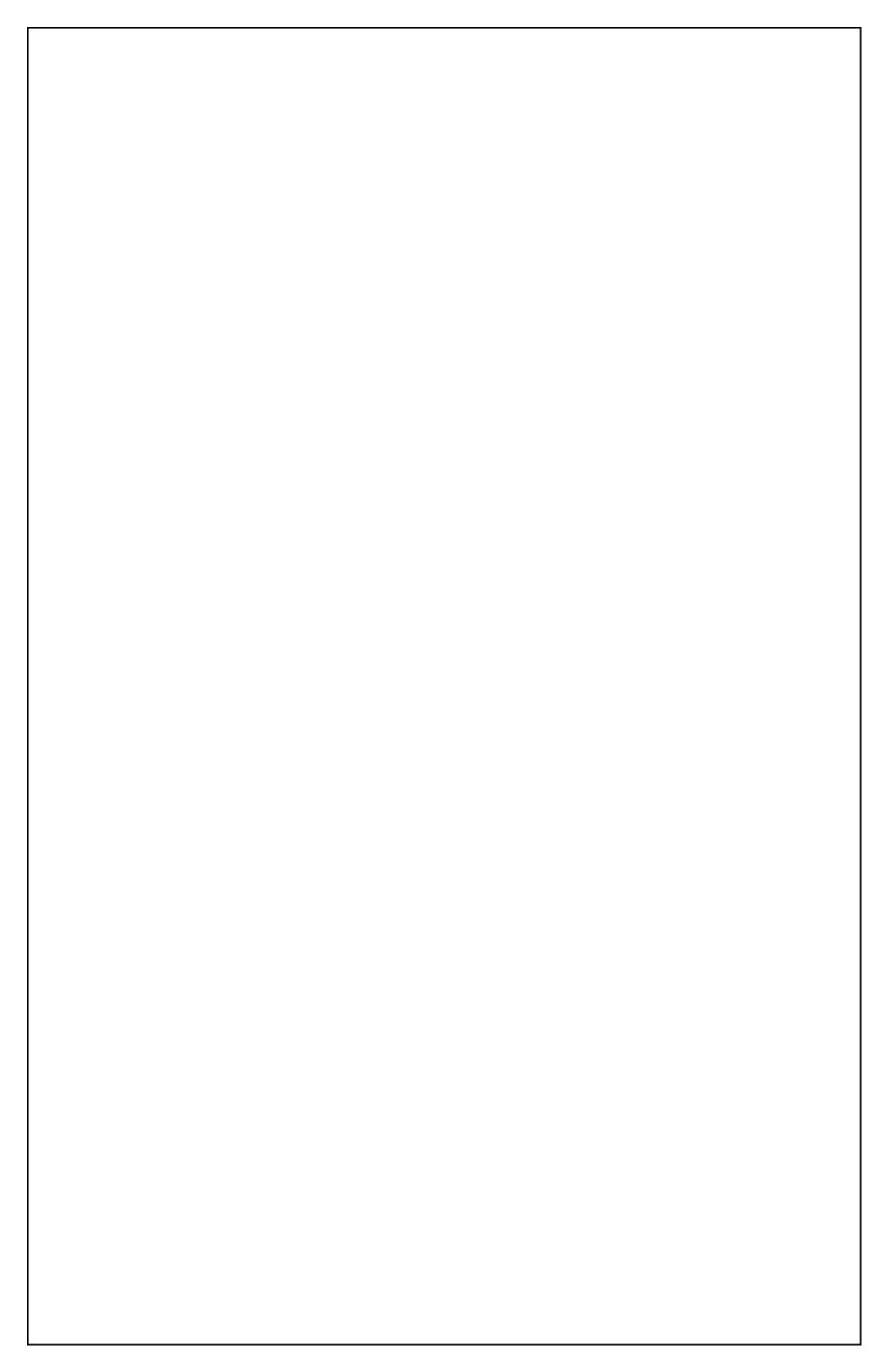
This is two types to sampler divider available.

#### **TYPES**

| BE 29-01 | 13 | 14 | 2.1 |
|----------|----|----|-----|
| BE 29-02 | 25 | 16 | 4.4 |



#### <u>HIGH SPEED STIRRER</u>


#### **BE 30**

The described device is a compact, bench-mounted laboratory stirrer designed specifically for the pretreatment of soil samples prior to particle size analysis. It features a mixer spindle that operates within a dispersion cup, which can be equipped with an anti-splashing baffle to enhance mixing efficiency by reducing sample loss and improving uniformity. This setup ensures effective dispersion and preparation of soil samples for accurate analysis. Suitable for operation on 220 V, 50 Hz, single phase, AC Supply.

#### STANDARD FOLLOWING

IS 2720 (Part 4)



